Exam

25/01/2024, 8:30 am - 10:30 am

Instructions:

- Prepare your solutions in an ordered, clear and clean way. Avoid delivering solutions with scratches.
- Write your name and student number in all pages of your solutions.
- Clearly indicate each exercise and the corresponding answer. Provide your solutions with as much detail as possible.
- Use different pieces of paper for solutions of different exercises.
- Read first the whole exam, and make a strategy for which exercises you attempt first. Start with those you feel comfortable with! There are $8+3$ total exercises (3 bonus exercises).

Exercise 1: $\left(0.5+0.5\right.$ points) Consider the function on \mathbb{R}^{3} defined by

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)= \begin{cases}\frac{x y z}{x^{4}+y^{4}+z^{4}} & \text { if }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \neq\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
0 & \text { if }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .\end{cases}
$$

a) Show that all partial derivatives exist everywhere.
b) Where is f differentiable?

Solution:

a) We have

$$
\begin{align*}
& \mathrm{D}_{1} f=\frac{\partial f}{\partial x}=\frac{y z}{x^{4}+y^{4}+z^{4}}-\frac{4 x^{4} y z}{\left(x^{4}+y^{4}+z^{4}\right)^{2}} \\
& \mathrm{D}_{2} f=\frac{\partial f}{\partial y}=\frac{x z}{x^{4}+y^{4}+z^{4}}-\frac{4 x y^{4} z}{\left(x^{4}+y^{4}+z^{4}\right)^{2}} \tag{1}\\
& \mathrm{D}_{3} f=\frac{\partial f}{\partial z}=\frac{x y}{x^{4}+y^{4}+z^{4}}-\frac{4 x y z^{4}}{\left(x^{4}+y^{4}+z^{4}\right)^{2}}
\end{align*}
$$

The only place where the partial derivatives may not be defined is at the origin. However, note that f and $\mathrm{D}_{i} f,(i=1,2,3)$, vanish along the axes, hence each partial derivative is 0 at the origin and so the derivatives exist everywhere . Recall also corollary 1.8.2 from the book.
b) According to the theorem of slide 15 of lecture 1 , the given function is differentiable in $\mathbb{R}^{3} \backslash\{0\}$ since f is not even continuous at 0 .

Exercise 2: (1.5 points) Let $U \subset \operatorname{Mat}(n, n)$ be the set of matrices A such that the matrix $A A^{\top}+A^{\top} A$ is invertible. Compute the derivative of the map $F: U \rightarrow \operatorname{Mat}(n, n)$ given by

$$
F(A)=\left(A A^{\top}+A^{\top} A\right)^{-1}
$$

Solution: Let $g(A)=A A^{\top}+A^{\top} A$ and $f(A)=A^{-1}$. Then $F(A)=f \circ g(A)$. From exercise 5 of tutorial 1 we know that $\mathrm{D}\left(A A^{\top}\right)=A H^{\top}+H A^{\top}$, therefore $\mathrm{D} g(A)=A H^{\top}+H A^{\top}+A^{\top} H+H^{\top} A$, while from lecture 1 we know that $\mathrm{D} f(A)=-A^{-1} H A^{-1}$. Using the chain rule (slide 12 of lecture 1) we have that

$$
\mathrm{D} F(A)=-\left(A A^{\top}+A^{\top} A\right)^{-1}\left(A H^{\top}+H A^{\top}+A^{\top} H+H^{\top} A\right)\left(A A^{\top}+A^{\top} A\right)^{-1}
$$

Exercise 3: (1 point) Consider the mapping $S: \operatorname{Mat}(2,2) \rightarrow \operatorname{Mat}(2,2)$ given by $S(A)=A^{2}$. Observe that $S(-I)=I$. Does there exist an inverse mapping g, i.e., a mapping such that $S(g(A))=A$, defined in a neighborhood of I, and such that $g(I)=-I$?

Solution: The answer is yes, we just need to confirm the conditions of the inverse function theorem. Recall that we know that $\mathrm{D} S(A): H \mapsto A H+H A$. This is a linear function, hence continuous, and it is clearly invertible at $A=-I$. Therefore, by the inverse function theorem (slide 9 of lecture 3), the function S is invertible in a neighborhood of $-I$ and there exists a C^{1}-mapping g such that $g(I)=-I$ and $S(g(A))=A$ for A in a neighborhood of I.

Exercise 4: (1 point) Show that if $f\binom{x}{y}=\varphi(x-y)$ for some twice continuously differentiable function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, then $\mathrm{D}_{1}^{2} f-\mathrm{D}_{2}^{2} f=0$

Solution: This is straightforward by using the chain rule. Let $z=x-y$. Then one confirms that indeed $\mathrm{D}_{1}^{2} f=\mathrm{D}_{2}^{2} f$, leading to the result:

$$
\begin{align*}
\mathrm{D}_{1} f & =\frac{\partial \varphi}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial \varphi}{\partial z} \\
\mathrm{D}_{1}^{2} f & =\frac{\partial^{2} \varphi}{\partial z^{2}} \frac{\partial z}{\partial x}=\frac{\partial^{2} \varphi}{\partial z^{2}} \\
\mathrm{D}_{2} f & =\frac{\partial \varphi}{\partial z} \frac{\partial z}{\partial y}=-\frac{\partial \varphi}{\partial z} \tag{2}\\
\mathrm{D}_{2}^{2} f & =-\frac{\partial^{2} \varphi}{\partial z^{2}} \frac{\partial z}{\partial y}=\frac{\partial^{2} \varphi}{\partial z^{2}}
\end{align*}
$$

Exercise 5: ($0.5+1$ points)

a) What is the volume of the tetrahedron T_{1} with vertices

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] ?
$$

b) What is the volume of the tetrahedron T_{2} with vertices

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{r}
-1 \\
3 \\
1
\end{array}\right], \quad\left[\begin{array}{r}
-2 \\
-5 \\
2
\end{array}\right] ?
$$

Hint: there may be a transformation between T_{2} and T_{1}.

Solution:

a) Using Fubini's theorem, the volume is:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-z-y} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z & =\int_{0}^{1} \int_{0}^{1-z}(1-z-y) \mathrm{d} y \mathrm{~d} z=\int_{0}^{1}\left[(1-z) y-\frac{y^{2}}{2}\right]_{0}^{1-z} \mathrm{~d} z \\
& =\int_{0}^{1} \frac{1}{2}(1-z)^{2} \mathrm{~d} z=\left[-\frac{1}{6}(1-z)^{3}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

b) The matrix $P=\left[\begin{array}{rrr}2 & -1 & -2 \\ 1 & 3 & -5 \\ 1 & 1 & 2\end{array}\right]$ maps the tetrahedron T_{1} onto the tetrahedron T_{2}. Using slide 8 of lecture 9 we have:

$$
\operatorname{vol} T_{2}=|\operatorname{det} P| \operatorname{vol} T_{1}=\frac{33}{6}=\frac{11}{2}
$$

Exercise 6: (1.5 points) What is the area of the surface in \mathbb{C}^{3} parametrized by $\gamma(z)=\left(\begin{array}{l}z^{p} \\ z^{q} \\ z^{r}\end{array}\right)$, for $z \in \mathbb{C},|z| \leq 1$?

Solution: We will use the formula of slide 13 of lecture 10 . Let us call the surface S. It will be convenient to work in polar coordinates, so let $z=s(\cos \theta+\imath \sin \theta)$. Then, the surface S is equivalently parametrized by

$$
\gamma(s, \theta)=\left[\begin{array}{c}
s^{p} \cos p \theta \\
s^{p} \sin p \theta \\
s^{q} \cos q \theta \\
s^{q} \sin q \theta \\
s^{r} \cos r \theta \\
s^{r} \sin r \theta
\end{array}\right]
$$

It follows that

$$
\mathrm{D} \gamma(s, \theta)=\left[\begin{array}{rr}
p s^{p-1} \cos p \theta & -p s^{p} \sin p \theta \\
p s^{p-1} \sin p \theta & p s^{p} \cos p \theta \\
q s^{q-1} \cos q \theta & -q s^{q} \sin q \theta \\
q s^{q-1} \sin q \theta & q s^{q} \cos q \theta \\
r s^{r-1} \cos r \theta & -r s^{r} \sin r \theta \\
r s^{r-1} \sin r \theta & r s^{r} \cos r \theta
\end{array}\right]
$$

Next we compute

$$
\mathrm{D} \gamma(s, \theta)^{\top} \mathrm{D} \gamma(s, \theta)=\left[\begin{array}{cc}
p^{2} s^{2 p-2}+q^{2} s^{2 q-2}+r^{2} s^{2 r-2} & 0 \\
0 & p^{2} s^{2 p}+q^{2} s^{2 q}+r^{2} s^{2 r}
\end{array}\right],
$$

which leads to $\operatorname{det}\left(\mathrm{D} \gamma(s, \theta)^{\top} \mathrm{D} \gamma(s, \theta)\right)=\left(p^{2} s^{2 p-1}+q^{2} s^{2 q-1}+r^{2} s^{2 r-1}\right)^{2}$. Finally we can compute:

$$
\begin{aligned}
\operatorname{vol}_{k} S & =\int_{|z| \leq 1} \sqrt{\operatorname{det}\left(\mathrm{D} \gamma(s, \theta)^{\top} \mathrm{D} \gamma(s, \theta)\right)} \mathrm{d} s \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(p^{2} s^{2 p-1}+q^{2} s^{2 q-1}+r^{2} s^{2 r-1}\right) \mathrm{d} s \mathrm{~d} \theta \\
& =\pi(p+q+r)
\end{aligned}
$$

Exercise 7: (1 point) Let $f:[a, b] \rightarrow \mathbb{R}$ be a smooth positive function. Find a parametrization for the surface of equation $\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}=(f(z))^{2}$

Solution: A possible parametrization is $\gamma:(z, \theta) \mapsto(A f(z) \cos \theta, B f(z) \sin \theta, z)=(x, y, z)$ with $z \in[a, b]$ and $\theta \in[0,2 \pi]$.

Exercise 8: (1.5 points) Compute the following integral:

$$
\int_{[\gamma(U)]} \sin y^{2} \mathrm{~d} x \wedge \mathrm{~d} z, \text { where } U=[0, a] \times[0, b], \text { and } \gamma\binom{u}{v}=\left(\begin{array}{c}
u^{2}-v \\
u v \\
v^{4}
\end{array}\right)
$$

$$
\begin{align*}
& \text { Solution: Since } \mathrm{D} \gamma=\left[\begin{array}{cc}
2 u & -1 \\
v & u \\
0 & 4 v^{3}
\end{array}\right] \text {, we have: } \\
& \qquad \begin{aligned}
\int_{[\gamma(U)]} \sin y^{2} \mathrm{~d} x \wedge \mathrm{~d} z & =\int_{0}^{a} \int_{0}^{b} \sin \left(u^{2} v^{2}\right)\left(8 u v^{3}\right) \mathrm{d} u \mathrm{~d} v \\
& =\int_{0}^{b}\left(\int_{0}^{a^{2}} \sin \left(x v^{2}\right)\left(4 v^{3}\right) \mathrm{d} x\right) \mathrm{d} v \quad \leftarrow x=u^{2} \\
& =-\left.\int_{0}^{b} 4 v \cos \left(x v^{2}\right)\right|_{0} ^{a^{2}} \mathrm{~d} v=-\int_{0}^{b} 4 v\left(\cos \left(a^{2} v^{2}\right)-1\right) \mathrm{d} v \\
& =-\int_{0}^{a^{2} b^{2}} \frac{2}{a^{2}} \cos y \mathrm{~d} y+\int_{0}^{b} 4 v \mathrm{~d} v \quad \leftarrow y=a^{2} v^{2} \\
& =2 b^{2}-\frac{2}{a^{2}} \sin \left(a^{2} b^{2}\right)
\end{aligned}
\end{align*}
$$

Bonus questions

Exercise 9: (1 point) For the 1-form $y \mathrm{~d} x-x \mathrm{~d} y-z \mathrm{~d} z$ on \mathbb{R}^{3} :
a) Write down the corresponding vector field
b) Sketch the vector field
c) Describe a path over which the work of the 1-form would be small
d) Describe a path over which the work would be large

Solution: (a) Note that the 1-form corresponds to the work of the vector field

$$
\vec{F}=\left[\begin{array}{c}
y \\
-x \\
-z
\end{array}\right] .
$$

(b)

(c) Note that if we consider a path close to $\gamma(t)=(t, t, 0)$, the work will be small.
(d) The work will be large over a path of the form $\gamma(t)=(t,-t,-t)$.

Exercise 10: (1 point) Let \vec{F} be the vector field $\vec{F}\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left[\begin{array}{c}F_{1}(x, y) \\ F_{2}(x, y) \\ 0\end{array}\right]$, where F_{1} and F_{2} are defined on all of \mathbb{R}^{2}. Suppose $\mathrm{D}_{2} F_{1}=\mathrm{D}_{1} F_{2}$. Show that there exists a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\vec{F}=\nabla f$

Solution: Simple application of Poincaré Lemma, see second item of slide 14 of lecture 15. For full points, the solution needs to be fully detailed by showing how and why $\operatorname{curl} \vec{F}=0$, and mentioning how is it that Poincaré lemma leads to the answer.

Exercise 11: (1 point) Find the unique polynomial p such that $p(1)=1$ and such that if

$$
\omega=x \mathrm{~d} y \wedge \mathrm{~d} z-2 z p(y) \mathrm{d} x \wedge \mathrm{~d} y+y p(y) \mathrm{d} z \wedge \mathrm{~d} x
$$

then $\mathbf{d} \omega=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$. For such polynomial p, find the integral $\int_{S} \omega$, where S is that part of the sphere $x^{2}+y^{2}+z^{2}=1$ where $z \geq \sqrt{2} / 2$, oriented by the outward-pointing normal.

Solution:

$$
\begin{align*}
\mathrm{d} \omega & =\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z-2 p(y) \mathrm{d} z \wedge \mathrm{~d} x \wedge \mathrm{~d} y+\left(p(y)+y p^{\prime}(y)\right) \mathrm{d} y \wedge \mathrm{~d} z \wedge \mathrm{~d} x \\
& =\left(1-p(y)+y p^{\prime}(y)\right) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \tag{4}
\end{align*}
$$

So, we have to solve the differential equation $y p^{\prime}(y)=p(y)$ which has general solution $p(y)=y+c$, but since we want $p(1)=1$, then $p(y)=y$. In this way

$$
\begin{equation*}
\omega=x \mathrm{~d} y \wedge \mathrm{~d} z-2 y z \mathrm{~d} x \wedge \mathrm{~d} y+y^{2} \mathrm{~d} z \wedge \mathrm{~d} x, \tag{5}
\end{equation*}
$$

and indeed $\mathbf{d} \omega=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$.
Next, instead of computing $\int_{S} \omega$ (which would be very difficult) we notice that $\mathbf{d} \omega$ is a constant form and rather use Stokes theorem $\left(\int_{S} \omega=\int_{M} \mathbf{d} \omega\right.$ where $\left.S=\partial M\right)$. We then see that S is the boundary of a piece of ball M. Using polar coordinates we have that M is parametrized by $\gamma(\theta, z)=(\underbrace{\sqrt{1-z^{2}}}_{r} \cos \theta, \underbrace{\sqrt{1-z^{2}}}_{r} \sin \theta, z)$ with $U=\left\{(\theta, z) \mid \theta \in[0,2 \pi], z \in\left[z_{0}, 1\right]\right\}$. Here we have chosen z_{0} for generality, later we can substitute $z_{0}=\frac{\sqrt{2}}{2}$. Notice that, geometrically with $\int_{M} \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$, we are computing the volume of a cap of a sphere that starts at $z=z_{0}$. The integral is set up as follows:

$$
\begin{equation*}
\int_{S} \omega=\int_{M} \mathbf{d} \omega=\int_{z_{0}}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{2 \pi} r \mathrm{~d} \theta \mathrm{~d} r \mathrm{~d} z, \tag{6}
\end{equation*}
$$

which simply tells us that we are adding, along $z \in\left[z_{0}, 1\right]$, the areas of circles of radius $\sqrt{1-z^{2}}$. So, we have:

$$
\begin{align*}
\int_{S} \omega=\int_{M} \mathrm{~d} \omega & =\int_{z_{0}}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{2 \pi} r \mathrm{~d} \theta \mathrm{~d} r \mathrm{~d} z \\
& =2 \pi \int_{z_{0}}^{1} \int_{0}^{\sqrt{1-z^{2}}} r \mathrm{~d} r \mathrm{~d} z \tag{7}\\
& =\pi \int_{z_{0}}^{1}\left(1-z^{2}\right) \mathrm{d} z=\left.\pi\left(z-\frac{z^{3}}{3}\right)\right|_{z_{0}} ^{1}=\pi\left(\frac{2}{3}-z_{0}+\frac{z_{0}^{3}}{3}\right)=: V\left(z_{0}\right) .
\end{align*}
$$

So, $V\left(\frac{\sqrt{2}}{2}\right)=\pi\left(\frac{2}{3}-\frac{1}{5 \sqrt{2}}\right)$. As a side note $V(0)=\frac{2}{3} \pi=\frac{V(-1)}{2}$ as you would expect.

